

Answers

Given $X_{1}=-2$,
Calculate X_{2} and X_{3}.
$X_{2}=3(-2)+5$
$X_{2}=-1$
$X_{3}=3(-1)+5$
$X_{3}=2$

$$
X_{n+1}=2-\frac{1}{2 X_{n}}
$$

Given $X_{1}=1$,
Calculate X_{2} and X_{3}

$$
\begin{array}{ll}
X_{2}=2-\frac{1}{2(1)} & X_{3}=2-\frac{1}{2(1.5)} \\
X_{2}=1.5 & X_{3}=1 . \dot{6}
\end{array}
$$

An approximate solution to an equation is found using the iterative process
$x_{n+1}=4+\frac{7}{x_{n}}$ and $x_{1}=4$.
Work out the solution to 1 decimal places.

$$
\begin{aligned}
& X_{2}=4+\frac{7}{(4)} \\
& X_{2}=5.75 \\
& X_{3}=5.217391 \ldots \\
& X_{4}=5.341666 \ldots \\
& X_{5}=5.310452 \ldots \\
& X_{6}=5.318155 \ldots
\end{aligned}
$$

So $x=5.3$ to 1 d.p.
a) Show that the equation $x^{3}+5 x=3$ can be rearranged to give $x=\frac{3}{5}-\frac{x^{3}}{5}$.

$$
\begin{aligned}
& 5 x=3-x^{3} \\
& x=\frac{\left(3-x^{3}\right)}{5}
\end{aligned} \quad \text { So, } \quad x=\frac{3}{5}-\frac{x^{3}}{5}
$$

b) Starting with $x_{0}=1$, use the iterative formula $x_{n+1}=\frac{3}{5}-\frac{x_{n}^{3}}{5}$, to find an estimate solution to 1 decimal place of $x^{3}+5 x=$ 3.

So, $\quad x_{1}=\frac{3}{5}-\frac{1^{3}}{5}$

$$
x_{1}=0.4
$$

So $x=0.6$
$x_{2}=0.5872$
to 1 d.p.
$x_{3}=0.5595$
$x_{4}=0.5649 \ldots$
$x_{5}=0.5639 \ldots$
Gold

